

Which Technologies
Financial Institutions can
adopt for mitigating the
risk of malware banking
attacks

Matteo Meucci, CEO Minded Security

Agenda

- Introduction to Banking Malware Attacks
- Technologies for mitigating the risk
- Threat modeling approach to manage the attacks complexity

Who am I?

- Matteo Meucci
 - Working on Application Security from 2002
 - OWASP Italy Founder and President from 2005
 - OWASP Testing Guide lead from 2006
 - Founder and CEO at Minded Security the Software Security Company from 2007

1. INTRODUCTION TO BANKING MALWARE ATTACKS

Malware Banking Attacks In Measured Data

1.7 Mil

phished bank users worldwide in 1 month (Ref Kaspersky)

11 % of overall population victim of phishing (Ref Verizon)

4381 users
attacked by malware in 1
month in U.K.
(Ref Kaspersky)

5% of bank users are infected by some malware (Ref Minded Security)

0.4% of users of high risk of account takeover (Ref Minded Security)

0.1% of are users of critical risk of account takeover (Ref Minded Security)

Malware Banking & Cyber Threat Agents

Evolution of Cyber-Threat Actors (1995-present)

Threat Actors: Occasional Intruders Motives: Testing and probing Systems and channels, computer disruptions, hacking

Attacks: Exploiting absence of security controls, sniffing data traffic

> Threat Actor (TTP) **Tools, Techniques** & Procedures Sophistication

DDoS Yahoo, Ebay, CNN (2001)

Threat Actors: Script Kiddies, Motives: Notoriety and fame, world-wide notoriety spread virus and worms, computer disruptions, profit from botnet- spamming Attacks: Viruses, Worms, DoS, Buffer Overflow Exploits, Spamming, Sniffing Network Traffic. Phishing emails with viruses

Ancheta Spam -Botnets (2004)

Jaschan-Sasser Worm (2004)

Threat Actors: Fraudsters, cyber-gangs Motives: Identity Theft, Online and Credit/Debit Card Fraud Attacks: SQLi, Sniffing Wireless Traffic, Session Hijacking, Phishing, Vishing, Drive by Download, Account take-over, MitM, MiTB, counterfeiting, banking malware, Trojans

Gonzales Gang, TJ-Maxx, **Heartland Payment Systems**, Hannaford Bros (2007)

Bank Trojan Zeus-Russian Cyber-Gang (2010)

Threat Actors: Hacktivists, cyber criminals, country sponsored spies, cyber-warfare actors, fraudsters. Motives: Political. Stealing Company Secrets, Fraud, Reputation Damage Attacks: DDoS, APTs, Account Take Over, MitM, MitB, Session Hijacking, Phishing, Web Injections, Banking Malware, **POS Malware**

LulzSec DDoS & Sony (2011)

Anonymous, DDoS & **Hacking (2011)**

Israel-Palestine. DDoS (2012)

Rodriguez & Yeje \$ 45 mil, Rakbank

Taraspov

Target POS Malware

(2013)

ATM heist (2013)

US Banks (2012)

Lloyd-

Omega

(1996)

Levin -

Citi

(1998)

2005

2010

2015

1.1 THE INFECTION

Common Malware Features

- Malware is executed on user devices
 WITHOUT EXPLICIT user consent
- They can keep control of the device
- They can halt or damage the user device
- They can alter the user browsing experience
- They can harvest user-data and device information
- They can modify the information on the device

Headline Breaking News

- 23% OF RECIPIENTS NOW OPEN PHISHING MESSAGES AND 11% CLICK ON ATTACHMENTS. (Verizon data-breachinvestigation-report-2015)
- Users open email Attachments, it's proven!

Real example

Infection Campaigns

- Email Messages
- Social Network Chats
- **Social Engineering**
- Infected Websites
- Malvertising

Subject: Invoice 0518900 Dear Customer

Invoice 0518900 can be downloaded at the following address

http://evildomain.Filename.zip? nconto=email

ExtraInfo

1.2 THE ATTACK

Attacks

- Attacks against bank website are performed through Man in The Browser
- The Trojan is attached to the browser process and can alter http request and responses
 - Web Injects
 - Request Hijacking
 - Credential Stealing (Keylogging / Screenshotting)
 - OTP Theft → secondary mobile infection

Banking Malware Attack Complexity

Web Fraud Social Engineering

- Malware Asks for User disposal credentials
- Attack is customized upon bank authentication process
- Custom Webinjects are often made by professional developers

Banking Malware Software Solution

Dropzone (where data is stored)

- Banking Malware Infections need to be controlled remotely
- Bots usually implement a client-server model
- It's unusual that P2P features are used as data channel

2. TECHNOLOGIES TO MITIGATE WEB FRAUD RISKS

Antimalware Solutions

- Security Strategy should be Layered
 - More layers are more difficult to defeat
- Fraud detection should be transparent to users and attacker
 - Forcing user into executing some binary is a bad practice. Attackers could ask them to install "a stronger;;-)) " security solution.
- The Solution Should be Flexible
 - Malware changes rapidly and the solution should change accordingly
- The Solution should be modular
 - Correlation of multiple anomaly detection methods can better detect unknown Oday threats.

From a banking point of view: the scenario

On-line Banking Fraud Office needs tools to know in real time which users are infected and could be defrauded using the on-line banking service.

AMT Banking Malware Detector: the answer

The AMT – ANTI MALWARE TECHNOLOGY

Agentless and Lightweight, Banking Malware Detector

- Infection alerts: infected users
- •API for integration of information with customer fraud engine

AMT Control Panel

Real time control of user infected

Detailed attack information

Managing of infected clients risk

Daily custom report

Is it Unbreakable?

• Is our technology unbreakable?

Dyreza bypassed many web fraud detection technology!

3. THREAT MODELING APPROACH TO MANAGE THE ATTACKS COMPLEXITY

Malware Domains & Risk Assessment Activities

Process For Attack Simulation And Threat Analysis

(PASTA)©

- 7. Risk & Impact Analysis

- **Identify Business Objectives**
- Identify Security & Compliance
- Business Impact Analysis
- Capture the boundaries of the technical
- Capture Infrastructure | Application |
- स्प्रिक्तिम्भूम् पृष्ट् हिल्नुवृह्द्वि ग्वांस्ट्रितां App Entry Points
- Identify Actors | Assets | Services | Roles |
- Data Flow Diagramming (DFDs) | Trust
- Probabilistic Attack Scenarios Analysis
- Regression Analysis on Security Events निर्मिद्दिक सिर्मिद्दिक एसिन्हा निर्मिद्दिक स्टिनिस्ट्रिक
- Threat to Existing Vulnerability Mapping
- Design Flaw Analysis Using Use & Abuse
- Attack Surface Analysis
- Attack Tree Development | Attack Library
- Attack to Vulnerability & Exploit Analysis using Attack Trees Qualify & quantify business impact

- Countermeasure Identification & Residual Risk Analysis
- ID risk mitigation strategies

Malware Banking Countermeasures: Requirements

- Authentication engineered with a threat model of malware attacks such as MitB, MITM
- Malware web injection detection and automatic Money Transfers Detection
- 3) Agentless (e.g. no software to download) and scalable
- 4) Transparent to the user
- 5) Integrated with fraud detection systems and SIEMs
- 6) Part of multi-layered defense

- This is a chain of required steps.
- Attackers need to perform successfully each of these for turning the attack into a monetary gain.
- For this reason the process can be reasonably stopped at any level.

 Infection floods could happen even months before cashing outs actually occur

name	iban	swift	min r	max	comment	url	timeout	id	
GIAN PIERO LELLI	IT78L0305801604100320306247		2500 1	10000	bonifico	ALL			delete
Angelo Lombardo	IT23Q0760110300001021873953		2500 1	10000	HJK4890	ALL			delete
ANGELO SCAROLA	IT82E0558401718000000000780		2500 1	10000	num 520	ALL			delete
cara salvatore	IT20J0521601634000000002689		750 2		trasferimento di denaro	businesswaybnl.it			delete
GIUSEPPE SGRO	IT92B0306234210000050016450		2500	10000	C5998FA	inbank.it,inbiz.intesasanpaolo.com,online- smallbusiness.unicredit.it			delete
Franco Giacotto	IT48E0326813000052497370600		2500 1	15000		ALL	1413177943	UFFICIO- PC_E532648A8984D5E0	delete
Christian Orru	IT47F0305967684510300667272		2500 1	10000	CODE 117	ALL			delete
1									l.

The Lessons Learnt from Banking Malware Security Incidents

- 1. Banking malware risks are escalating targeting bank customers: Compliance driven controls are not good enough. Banks are liable for retail bank customer money losses and exposed to law suits from businesses that experienced money losses.
- 2. Banks need to improve web fraud detection controls: Detect malware web injections originating from banking malware Simulate malware attacks to identify multi layered controls
- 3. Suggested malware banking risk management strategy: Identify the assets at risk Adopt a risk-based threat modeling process

References 1/3

- OWASP Top Ten Vulnerabilities
 - http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
- OWASP Testing Guide
 - https://www.owasp.org/images/5/56/OWASP Testing Guide v3.pdf
- OWASP Application Threat Modeling
 - http://www.owasp.org/index.php/Application Threat Modeling
- OWASP Application Security Guide for CISO
 - https://www.owasp.org/index.php/Application Security Guide For CISOs
- Security Flaws Identification Through Threat Modeling
 - http://www.net-security.org/dl/insecure/INSECURE-Mag-17.pdf
- Real World Threat Modeling Using the PASTA Methodology
 - https://www.owasp.org/images/a/aa/AppSecEU2012 PASTA.pdf
- Threat Modeling of Banking Malware Attacks
 - https://www.owasp.org/images/5/5f/Marco Morana and Tony UV Threat Modeling of Banking Malware.pdf
- Software Assurance Maturity Model (SAMM)
 - http://www.opensamm.org/

Reflection Threat Charles Book

- http://www.amazon.co.uk/Application-Threat-Modeling-Marco-Morana/dp/ 0470500964
- Manage Your Risk With Application Threat Modeling
 - http://www.myappsecurity.com/wp-content/uploads/2011/09/Manage-Your-Risk-With-ThreatModeler-OWASP.pdf
- How to Design More Secure Online Payment Systems
 - http://www.isaca.org/chapters5/Venice/Events/Documents/ISACAVENICE-OWASP-UNIVE-2013-6%20-%20Morana.pdf
- Writing Secure Software
 - http://securesoftware.blogspot.co.uk/
- Building Security In the SDLC
 - http://www.blackhat.com/presentations/bh-usa-06/bh-us-06-Morana-R3.0.pdf
- Architectural Design Patterns for SSO
 - http://www.owasp.org.cn/OWASP_Conference/2011/10.pdf
- Adapting to evolving cyber attack scenarios: a focus on hacking and malware threats targeting financial applications
 - http://www.owasp.com/images/e/e0/OW/ASP-eCrime-London-2012-Final ndf

References 3/3 Attention, CISOs: Strategy is the Only Security

- http://www.cio.in/content/attention-cisos-strategy-only-security
- Software Security Assurance
 - http://iac.dtic.mil/csiac/download/security.pdf
- Producing Secure Software With Security Enhanced Software Development Processes
 - http://www.net-security.org/dl/insecure/INSECURE-Mag-16.pdf
- Security Flaws Identification and Technical Risk Analysis Through Threat Modeling, Insecure Magazine, June 2008, Page 85
 - <u>Security Flaws Identification and Technical Risk Analysis Through Threat Modeling,</u>
 <u>In-secure Magazine, June 2008, Page 85</u>
- Web Application Vulnerabilities And In-secure Software Root Causes
 - http://www.net-security.org/dl/insecure/INSECURE-Mag-17.pdf
 - http://www.net-security.org/dl/insecure/INSECURE-Mag-15.pdf

Questions?

Mail: matteo.meucci@mindedsecurity.com

Corporate Site: www.mindedsecurity.com

AMT Banking Malware Detector: www.malware-detector.com

Thanks!

