

Basel III Final Standar Capital requirement fo posures to central counterparties CC&G – Chief R Silvia Sabai

CC&G- Risk Policy Manage

London Stock Exchange Group 16 June 2014

Table of Contents

- Part I Executive Summary
- Part II Basel III Interim Rules
- Part III Basel III Final Standards
- Part IV The New Standardized Approach
- Part V Final Standards: CC&G Sensitivity Analysis
- Part VI Conclusions
- Appendix Technicalities on the New Standardized approach

Part I - Executive Summary

Executive Summary

 The G20 Leaders, at their Pittsburgh summit in September 2009, agreed to a number of measures to improve the over-the-counter (OTC) derivatives markets, including creating incentives for banks to increase their use of Central Counterparties (CCPs)

- The Basel Committee on Banking Supervision (BCBS) has recently revised the "Interim Rules" for banks' exposures to Qualified CCPs¹ (QCCPs) published in July 2012
- <u>"Final standards" will apply as of 1 January 2017. Until that time, the "Interim Rules"</u> remain in effect
- Notable revisions to the framework include:
 - New simplified approach for determining the capital requirements for bank exposures to QCCPs
 - Introduction of a "<u>Standardized approach for measuring counterparty credit risk</u> <u>exposures</u>" (SA-CCR) aiming at overcoming limits of the "Current Exposure Method" (CEM)
 - Granularity and concentration adjustments currently included in the "Interim Rules" have been deleted

Part II - Basel III Interim Rules

Banks can choose between two methods to calculate their capital requirement:

Method 1:	2% RW against 'Trade Exposure' + Pre-funded Default Fund multiplied by 'C-Factor' (provided by CCP)
Method 2:	Minimum of: a) 2% RW against 'Trade Exposure' +1,250% RW against pre-funded Default Fund b) 20% RW against 'Trade Exposure'

- CCPs are required to calculate and publish "*on a monthly basis at a minimum*" a C-Factor so that Members can calculate their capital requirement under Method 1
- C-Factor is generated by measuring total default provisions of the CCP against "Hypothetical Capital" (K_{CCP}) calculated from trade data using the Current Exposure Method (CEM)
- The CEM C-Factor has been shown to be inaccurate, particularly in relation to IRS

Part III - Basel III Final Standards

Banks Exposures to CCPs

• The Basel Committee has identified two macro-types of banks' exposures to CCPs:

Initial Margins posted to the CCP

- If Initial Margin collateral is posted in a way that is <u>bankruptcy remote</u> (such that if the CCP defaults the Clearing Member does not lose its initial margin) a <u>0% risk weight</u> is applied
- If Initial Margin collateral is posted in a way that is <u>not bankruptcy remote</u>, <u>a 2% risk</u> <u>weight is applied</u>
- <u>Capital treatment of bank's trade exposures to a CCP</u> (including both the mark-to market current exposure and the potential future exposure to the CCP on the banks' cleared portfolio) is the same applied to Initial Margins posted to the CCP in a way that is not bankruptcy remote
- The use of unsegregated collateral is further discouraged in the Final Standards as it will be added to a member's trade exposure in most cases
- The Basel III Consultative Document does not provide a clear definition of "<u>bankruptcy</u> <u>remote"</u>
- If exclusively margin collateral posted in securities can be considered "<u>bankruptcy</u> <u>remote</u>", then a 0% Risk Weight may create distortive incentives for Clearing Members to deposit Initial Margins in securities rather than in cash <u>Increase of Liquidity</u> <u>Pressure</u>

Same as the "Interim Rules"

Default Fund Exposures: *K*_{*CCP*}

• The "Hypothetical Capital Requirement" of the CCP due to its counterparty credit risk exposures to all of its clearing members and their clients is equal to:

$$K_{CCP} = \sum_{CMi} EAD_i \cdot RW \cdot CR$$

Different from the "Interim Rules"

RW is a risk weight of 20%

CR is the capital ratio of 8%

 EAD_i is the exposure amount of the CCP to CM_i , including both the CM_i 's own transactions and client transactions guaranteed by CM_i , and all the collateral posted with the CCP against these transactions

- For derivatives, EAD_i is calculated as the bilateral trade exposure the CCP has against the CM_i using the "<u>Standardized approach for measuring counterparty credit risk</u> <u>exposures</u>" (SA-CCR). All collateral held by a CCP is used to offset the CCP's exposure to CM_i
- <u>For SFTs</u>, EAD_i is equal to $max(EBRM_i IM_i DF_i; 0)$; where $EBRM_i$ is the exposure value to CM_i before risk mitigation, IM_i is the initial margin posted by CM_i and DF_i is the prefunded default fund contribution by CM_i

Default Fund Exposures: *K*_{*CMi*}

• Calculation of the "Capital Requirement for each Clearing Member"

$$K_{CMi} = \max\left(K_{CCP} \cdot \frac{DF_i^{pref}}{DF_{CCP} + DF_{CM}^{pref}}; 8\% \cdot 2\% \cdot DF_i^{pref}\right)$$

Different from the "Interim Rules"

 DF_{CM}^{pref} is the total prefunded default fund contributions from clearing members DF_{CCP} is the Skin in The Game of the CCP

 DF_i^{pref} the prefunded default fund contributions provided by Clearing Member i

 The Concentration Factor - measuring the degree of concentration of clearing members positions at the CCP - is no longer applied. CC&G believes that a concentration factor should be restored in order to take into account that more granular and the less concentrated is a CCP, less punitive should be the allocation factor of the capital requirement

Part IV - The New Standardized Approach

The New Standardized Approach (SA-CCR)

- The New Standardized Approach (SA-CCR) for measuring exposure at default (EAD) for counterparty credit risk (CCR), issued by the Basel Committee in April 2014, will replace both non-internal models approaches: the Current Exposure Method (CEM) and the Standardized Method (SM)
- Main objectives of the SA-CCR approach include:
 - Devise an approach suitable for a wide variety of derivatives transactions
 - Address known limits of the CEM and the SM
 - Minimize discretion used by National Authorities and banks
 - Improve the risk sensitivity of the capital framework

Exposure at Default under SA-CCR

• The exposures under the SA-CCR (*EAD*) consist of two components: Replacement Cost (*RC*) and Potential Future Exposure (*PFE*)

EAD = 1.4 * (RC + PFE)

- The PFE portion consists of a multiplier that allows for the partial recognition of excess collateral and an aggregate add-on, which is derived from add-ons developed for each asset class (interest rate derivatives, foreign exchange derivatives, credit and equity derivatives, commodity derivatives)
- A "hedging set" under the SA-CCR is a set of transactions within a single netting set within which partial or full offsetting is recognized for the purpose of calculating the *PFE* add-on
- The SA-CCR will apply to OTC derivatives, exchange-traded derivatives and long settlement transactions

Pros and Cons of the SA-CCR

Pros:

- Recognition of risk offsets (correlations) within an asset class and country
- Improved treatment of options and basis swaps
- More appropriate recognition of collateral as a risk exposure mitigant
- Recognition of reduced risk in a centrally cleared environment
- Recognition of correlations between underlying names and indices for equity and credit derivatives

Cons:

- Does not recognise differences in volatility between different country markets
- Volatility-based derivatives may be treated punitively
- Not clear if it will appropriately treat less common or new products and risk types

Part V - Final Standards: CC&G Sensitivity Analysis

- In order to evaluate the impact of the New Standardized Approach (SA-CCR), a sensitivity analysis has been conducted on CC&G Equity Derivatives asset class (data updated at 31 March 2014)
- The following key variables, influencing the shape of "Capital Requirement for each Clearing Member" (K_{CMi}), have been identified:
 - **Total Prefunded Default Fund** contributions from clearing members, DF_{CM}^{pref}
 - **Initial Margins** Amount, required for K_{CCP} calculation
 - Skin in the Game of the CCP, DF_{CCP}

$$K_{CMi} = \max\left(\frac{K_{CCP}}{DF_{CCP} + DF_{CM}^{pref}};8\% \cdot 2\%\right) \cdot DF_i^{pref}$$

Cap. Req. K_{CCP} - based Cap. Req. floor

K_{CMi} Vs Total Prefunded Default Fund

- Hp: 20 Different Scenarios for Total Prefunded Default Fund positive and negative variations
- Current amount of Total Prefunded Default Fund at 31 March was €1.6 bln

K_{CMi} Vs Initial Margins

- Hp: 20 Different Scenarios for Initial Margins positive and negative variations
- Current amount of Total Initial Margins at 31 March was €3.0 bln

K_{CMi} Vs Skin in the Game

- Hp: 20 Different Scenarios for CC&G's Skin in the Game negative and positive variations
- Current Skin in the Game quota for the Equity Derivatives asset class at 31 March was €5.3 mln

*K*_{CMi} Vs Margins↓+Default Fund↓

- Hp: 20 Different Scenarios for Initial Margins and Total Prefunded DF negative and positive variations
- Initial Margins and Total Prefunded DF variations in the **same direction** (both increase or both decrease)

*K*_{CMi} Vs Margins↑+Default Fund↓

- Hp: 20 Different Scenarios for Initial Margins and Total Prefunded DF negative and positive variations
- Initial Margins and Total Prefunded DF variations in the **opposite direction** (one up; the other down)

Effects on K _{CCP} -based Capital Requirement			
Key Variable	Down	Up	
Total Prefunded Default Fund	Strong dependence. Cap. Req. KCCP- based results higher than Cap.Req. Floor if a -74% variation occurs	Weak dependence. Higher increases imply weak decreases of Cap.Req. KCCP-based	
Initial Margins	Medium dependence	Weak dependence	
Skin in the Game	Very weak dependence	Very weak dependence	
Margins↓+Default Fund↓	Very strong dependence. As expected, a joint decrease makes the Cap.Req KCCP-based overcome Floor component sooner if compared with case a)	Weak dependence	
Margins↑+Default Fund↓	<u>Strong dependence</u> . Cap.Req. trend is driven by Default Fund Amount	Weak dependence	

Capital Requirement Floor overshadows K_{CCP}-based Capital Requirements Is this a proper incentive towards prudent Risk Management at CCP level?

Part VI - Conclusions

SWOT Analysis

• <u>Strengths</u>

- Creating incentives to increase banks use of CCPs
- Increases safety by favoring CCP Clearing for OTC Derivatives
- Encouraging CCPs to satisfy the CPSS-IOSCO Principles
- Weaknesses
 - SA-CCR Approach shows structural weaknesses if applied to some types of derivatives
 - A concentration factor taking into account that the less concentrated is a CCP, less punitive should be the allocation factor of the aggregate capital requirement - should be taken into account
- Opportunities
 - OTC Business is attractive for CCPs
 - Can attract new actors to CCP Clearing
- <u>Threats</u>
 - Capital Treatment of Margin Exposures may incentivize clearing members to deposit margins in securities rather than in cash
 - The rules appear to implicitly favour CCP with lower Risk Management Standards

Conclusions

In conclusion, the Basel III Capital Requirement Regime should ensure that:

- Prudence in setting Default Fund Amount is not hindered
- The preferable nature of Prefunded Contributions to Default Funds rather than Committed ones is recognized
- Efficient CCPs, that have a lower capital requirement, are not penalized
- SA-CCR Calibration is such that the G-20 target is hit, providing incentives towards CCPs Clearing rather than Bilateral Clearing
- Cash Margin Contributions are not unduly discouraged

Appendix - Technicalities on the New Standardized approach

- The Basel II Counterparty Credit Risk (CCR) Framework for derivatives capitalises against the risk of losses due to counterparties defaulting before meeting all their contractual obligations on bilateral transactions
- The new Standardized Approach (SA-CCR) will replace both current non-internal methods approaches – the Current Exposure Method (CEM) and the Standardized Method (SM) – for measuring exposure at default (EAD) for Counterparty Credit Risk (CCR)
- The CEM has been criticized for several limitations mainly related to the following aspects:
 - i. non distinction between margined and non margined transactions,
 - ii. the supervisory add-on factors do not incorporate high level of volatilities,
 - iii. the recognition of hedging and netting benefits is too simplistic
- The SM was also criticized for several weaknesses

The SA-CCR Approach

- <u>The SA-CCR overcomes the limitations of the CEM and of the SM, being calibrated on a stress period and recognizing the benefit of collateral and legal netting arrangements</u>
- SA-CCR is suitable for a wide variety of derivatives transactions (margined and non, as well as bilateral and cleared)
- <u>The Exposure At Default under the SA-CCR is function of the Replacement Cost (RC)</u> and of the Potential Future Exposure (PFE)
- The PFE portion consists of a multiplier that allows for the partial recognition of excess collateral and an aggregate add-on which is derived from add-ons calculated for five main asset classes: Interest Rate, Foreign Exchange, Credit, Equity and Commodity Derivatives
- The Replacement Cost (RC) is calculated at the netting set level, whereas PFE add-ons are calculated for each asset class within a given netting set and then aggregated; both are calculated differently for margined and non margined transactions

- The PFE add-on consists of two components:
 - a multiplier that allows for the recognition of excess collateral or negative mark to market for the transactions
 - an aggregate add-on component, which consists of add-ons calculated for each asset class

 $PFE = multiplier * AddOn_{aggregate}$

• The *AddOns* are calculated at *asset class level* and then aggregated. For each derivative transaction the primary risk factor is determined and attributed to one of the 5 asset classes:

PFE: the AddOns

- For each asset class, specific *AddOns* depending on the different offsetting benefits of the specific asset class are calculated
- However the *AddOns* formulas have a number of common features and in particular the following steps are performed:
 - an Adjusted Notional Amount based on actual notional or price is calculated at trade level. For interest rate and credit derivatives the Adjusted Notional Amount also incorporates a supervisory measure of duration (Black-Scholes option delta formula)
 - a Maturity Factor reflecting the time horizon appropriate for the type of transaction is calculated at the trade level and applied to the adjusted notional
 - a Supervisory Delta Adjustment is made, based on the directionality of the position and on the linearity/non linearity of the trade
 - a Supervisory Factor is then applied to reflect the volatility of the primary risk factor of each asset class
 - finally, an Aggregation Method is applied to aggregate trade-level AddOns to asset-class level AddOns, applying a correlation parameter for credit, equity and commodity derivatives
- The AddOn_{agg}is abtained summing up the asset class level AddOns without allowing any diversification benefit across asset classes
- The SA-CCR foresees different time risk horizons for margined and non margined transactions, envisaging shorter time horizon for centrally cleared margined transactions

PFE: the Multiplier

- Over-collateralization should reduce capital requirement for counterparty credit risk: this risk-reducing property of the excess of collateral is taken into account in the PFE component of the Exposure At Default under the SA-CCR
- In particular the *multiplier* applied to the PFE *AddOn* component decreases as excess collateral increases (floored at 5%)
- The *multiplier* is also activated when the current value of the derivative transactions is negative, in fact out-of-the money transactions do not currently represent an exposure and have less chance to go back in-the-money

• <u>For Non Margined Transactions</u>, the *RC* can be defined as the largest between zero and the current market value of the derivative contracts (*V*) minus net haircut collateral held by the bank (*C*):

$$RC = \max(V - C; 0)$$

 For Margined Transactions, the RC can be defined as the largest between (V - C) and the largest net exposure including all collateral held that would not trigger a collateral call

$$RC = \max(V - C; Th + MTA - NICA; 0)$$

where:

C includes also the collateral balance due to past variation margin payments *Th* is the positive threshold before the counterparty must send the bank collateral *MTA* is the minimum transfer amount applicable to the counterparty

NICA is the net independent collateral amount, i.e. the amount of collateral (other than variation margins) that a bank may use to offset its exposure on the default of the counterparty (NICA does not include collateral that a bank has posted to a segregated, bankruptcy remote account)

Thank you!!

Questions?